垃圾回收算法
垃圾回收算法
标记-清除 Mark-Sweep
算法分为“标记”和“清除”两个阶段:
首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程,这在前一节讲述垃圾对象标记判定算法时其实已经介绍过了。
缺点:
- 第一个是执行效率不稳定,如果 Java 堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;
- 第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
标记-复制 Mark-Copy
“半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效,
缺陷:
- 这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费太多。
- 如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销。
Appel 式回收
HotSpot 虚拟机的 Serial、ParNew 等新生代收集器均采用了这种策略来设计新生代的内存布局。
Appel 式回收的具体做法是:把新生代分为
- 一块较大的 Eden 空间
- 两块较小的 Survivor 空间
每次分配内存只使用 Eden 和其中一块 Survivor。发生垃圾搜集时,将 Eden 和 Survivor 中仍然存活的对象一次性复制到另外一块 Survivor 空间上,然后直接清理掉 Eden 和已用过的那块 Survivor 空间。
HotSpot 虚拟机默认 Eden 和 Survivor 的大小比例是 8∶1,也即每次新生代中可用内存空间为整个新生代容量的 90%(Eden 的 80%加上一个 Survivor 的 10%),只有一个 Survivor 空间,即 10%的新生代是会被“浪费”的。
分配担保
当然,98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于 10%的对象存活,因此 Appel 式回收还有一个充当罕见情况的“逃生门”的安全设计,
当 Survivor 空间不足以容纳一次 Minor GC 之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。
- Java 堆 = 老年代 + 新生代
- 新生代 = Eden + S0 + S1
- 当 Eden 区的空间满了, Java 虚拟机会触发一次 Minor GC,以收集新生代的垃圾,存活下来的对象,则会转移到 Survivor 区。
- 大对象(需要大量连续内存空间的 Java 对象,如那种很长的字符串)直接进入老年态。
- 如果对象在 Eden 出生,并经过第一次 Minor GC 后仍然存活,并且被 Survivor 容纳的话,年龄设为 1,每熬过一次 Minor GC,年龄+1,
- 年龄超过阈值(默认 15),则被晋升到老年态。即长期存活的对象进入老年态。
- 老年代满了而无法容纳更多的对象,Minor GC 之后通常就会进行 Full GC,Full GC 清理整个内存堆,包括年轻代和年老代。
- Major GC 发生在老年代的 GC,清理老年区,经常会伴随至少一次 Minor GC,比 Minor GC 慢 10 倍以上。
晋升年龄阈值
Hotspot 遍历所有对象时,按照年龄从小到大对其所占用的大小进行累加,当累加到某个年龄时,所累加的大小超过了 Survivor 区的一半,则取这个年龄和 MaxTenuringThreshold
中更小的一个值,作为新的晋升年龄阈值。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 S0 或者 S1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold
来设置。不过,设置的值应该在 0-15,否则会爆出错误。
动态年龄计算的代码如下
uint ageTable::compute_tenuring_threshold(size_t survivor_capacity) {
//survivor_capacity是survivor空间的大小
size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);//TargetSurvivorRatio 为50
size_t total = 0;
uint age = 1;
while (age < table_size) {
total += sizes[age];//sizes数组是每个年龄段对象大小
if (total > desired_survivor_size) break;
age++;
}
uint result = age < MaxTenuringThreshold ? age : MaxTenuringThreshold;
...
}
标记-整理 Mark-Compact
标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费 50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都 100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
针对老年代对象的存亡特征,1974 年 Edward Lueders 提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存,“标记-整理”算法的示意图如图 3-4 所示。
标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策:
如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机 设计者形象地描述为“Stop The World”。
权衡
混合解决方案可以不在内存分配和访问上增加太大额外负担,做法是:
让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。
基于标记-清除算法的 CMS 收集器面临空间碎片过多时采用的就是这种处理办法。